THIS IS A DEVELOPMENT VERSION OF PROFILES. PLEASE GO TO THE PRODUCTION ENVIRONMENT FOR UPDATES

Header Logo

Connection

Rong Gan to Temporal Bone

This is a "connection" page, showing publications Rong Gan has written about Temporal Bone.
Connection Strength

3.604
  1. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear Res. 2019 07; 378:43-52.
    View in: PubMed
    Score: 0.628
  2. Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear. J Acoust Soc Am. 2016 04; 139(4):1735.
    View in: PubMed
    Score: 0.521
  3. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint. Biomech Model Mechanobiol. 2011 Oct; 10(5):713-26.
    View in: PubMed
    Score: 0.381
  4. A totally implantable hearing system--design and function characterization in 3D computational model and temporal bones. Hear Res. 2010 May; 263(1-2):138-44.
    View in: PubMed
    Score: 0.331
  5. Multifield coupled finite element analysis for sound transmission in otitis media with effusion. J Acoust Soc Am. 2007 Dec; 122(6):3527-38.
    View in: PubMed
    Score: 0.292
  6. Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol. 2007 Jun; 28(4):551-8.
    View in: PubMed
    Score: 0.282
  7. Mass loading on the ossicles and middle ear function. Ann Otol Rhinol Laryngol. 2001 May; 110(5 Pt 1):478-85.
    View in: PubMed
    Score: 0.185
  8. Dual-laser measurement of human stapes footplate motion under blast exposure. Hear Res. 2021 04; 403:108177.
    View in: PubMed
    Score: 0.182
  9. Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res. 2013 Jul; 301:146-55.
    View in: PubMed
    Score: 0.104
  10. Dynamic properties of human round window membrane in auditory frequencies running head: dynamic properties of round window membrane. Med Eng Phys. 2013 Mar; 35(3):310-8.
    View in: PubMed
    Score: 0.100
  11. Mechanical properties of stapedial annular ligament. Med Eng Phys. 2011 Apr; 33(3):330-9.
    View in: PubMed
    Score: 0.090
  12. Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am. 2009 Jul; 126(1):243-53.
    View in: PubMed
    Score: 0.082
  13. Combined effect of fluid and pressure on middle ear function. Hear Res. 2008 Feb; 236(1-2):22-32.
    View in: PubMed
    Score: 0.073
  14. Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am. 2007 Aug; 122(2):906-17.
    View in: PubMed
    Score: 0.071
  15. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling. Hear Res. 2007 Aug; 230(1-2):24-33.
    View in: PubMed
    Score: 0.070
  16. Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am. 2006 Dec; 120(6):3799-810.
    View in: PubMed
    Score: 0.068
  17. An advanced computer-aided geometric modeling and fabrication method for human middle ear. Med Eng Phys. 2002 Nov; 24(9):595-606.
    View in: PubMed
    Score: 0.051
  18. Three-dimensional modeling of middle ear biomechanics and its applications. Otol Neurotol. 2002 May; 23(3):271-80.
    View in: PubMed
    Score: 0.050
  19. The effect of blast overpressure on the mechanical properties of the human tympanic membrane. J Mech Behav Biomed Mater. 2019 12; 100:103368.
    View in: PubMed
    Score: 0.041
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

THIS IS A DEVELOPMENT VERSION OF PROFILES. PLEASE GO TO THE PRODUCTION ENVIRONMENT FOR UPDATES